A Solvable Six-Vertex Model with Defects

M. L. Glasser ${ }^{1}$

Received June 27, 1983

> The general six-vertex model with defective (missing) horizontal bonds leads to a 22 -vertex model. A special case, which is isomorphic to a ten-vertex model amendable to the quantum inverse scattering method, is solved in closed form.

KEY WORDS: Free energy; vertex model; Bethe Ansatz; inverse scattering method; transfer matrix; ice condition.

Several years ago I had occasion to examine a number of ice models with impurities and defects (in the form of missing bonds). One of these is isomorphic to a class of ten-vertex models ${ }^{(1)}$ which has recently been shown to be exactly solvable by the quantum inverse scattering method. ${ }^{(2)}$ Both for its intrinsic interest and the light it sheds on Onody and Karowski's model it seems worthwhile to present the closed-form solution.

Consider a general ice model which allows for the absence of horizontal bonds. This leads to the 22-vertex configurations in Fig. 1, with their weight $\alpha_{j}=\exp \left(-\beta \epsilon_{j}\right)$.

If we set $\alpha_{11}=\cdots=\alpha_{22}=0, \alpha_{1}=\alpha_{2}=A, \alpha_{3}=\alpha_{4}=B, \alpha_{0}=\alpha_{10}$ $=A B$ and $\alpha_{5}=\cdots=\alpha_{8}=C$, we obtain Onody and Karowski's tenvertex model, which is solvable by the quantum inverse scattering method under the condition $C=[(A+B)(A B-1)]^{1 / 2}$. Following Ref. 1 , the elementary vertex can be written

$$
L_{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
b_{n}^{+} & c_{n}
\end{array}\right)
$$

where the subscript indicates that the operator affects the nth position in a

[^0]

Fig. 1. The 22 -vertex configurations corresponding to an "ice" model with defective horizontal bonds. The vertex weights are $\alpha_{j}=\exp \left(-\beta \epsilon_{j}\right), \beta=1 / k_{B} T$. (Configurations $\alpha_{21} \alpha_{22}$, consisting of opposite vertical arrows, are not shown.)
row (we consider an $N \times N$ lattice with periodic boundary conditions), and

$$
a=\operatorname{diag}(A, A B, B), \quad c=\operatorname{diag}(B, A B, A), \quad b=\left(\begin{array}{lll}
0 & 0 & 0 \\
c & 0 & 0 \\
0 & c & 0
\end{array}\right)
$$

Then the monodromy matrix, whose trace is the transfer matrix, is

$$
\prod_{n=1}^{N} L_{n}=\left(\begin{array}{ll}
X(\nu), & Y(\nu) \\
Z(\nu), & W(\nu)
\end{array}\right)
$$

and the entries satisfy the commutation relation

$$
\begin{gathered}
{\left[Y(\nu), Y\left(\nu^{\prime}\right)\right]=0} \\
X(\nu) Y\left(\nu^{\prime}\right)=\frac{\sin \left(\eta+\nu^{\prime}-\nu\right)}{\sin \left(\nu-\nu^{\prime}\right)} Y\left(\nu^{\prime}\right) X(\nu)-\frac{\sin \eta}{\sin \left(\nu-\nu^{\prime}\right)} Y(\nu) X\left(\nu^{\prime}\right) \\
W(\nu) Y\left(\nu^{\prime}\right)=\frac{\sin \left(\eta+\nu-\nu^{\prime}\right)}{\sin \left(\nu-\nu^{\prime}\right)} Y\left(\nu^{\prime}\right) W(\nu)+\frac{\sin \eta}{\sin \left(\nu-\nu^{\prime}\right)} Y(\nu) W\left(\nu^{\prime}\right)
\end{gathered}
$$

where

$$
\begin{align*}
\tan \nu & =(A+B)^{2} /(B-A)\left[4 A^{2} B^{2}-(A+B)^{2}\right]^{1 / 2} \tag{1}\\
\cos \eta & =-(A+B) / 2 A B
\end{align*}
$$

This corresponds to Onody and Karowski's parameterization. By quantum inverse scattering ${ }^{(2)}$ this leads to an eigenvalue condition [Eq. (10) in Ref. 1], which in the thermodynamic limit can be cast as an integral equation. The solution, by the methods of Ref. 3, gives the free energy

$$
-\beta F=\log \left|\tan \frac{\pi}{2 \eta}\left(\frac{\pi}{2}+\nu\right) \tan \frac{\pi}{2 \eta}\left(\frac{\pi}{2}-\nu\right)\right|+2 \begin{cases}\ln A, & \nu>0 \tag{2}\\ \ln B, & \nu<0\end{cases}
$$

Onody and Karowski(1) have discussed the phase diagram of the model in the $A-B$ plane. Equations (1) and (2) allow the critical indices to be found by elementary analytic methods.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation. I thank Mr. A. Al-Humadi for help with the calculations.

REFERENCES

1. R. N. Onody and M. Karowski, J. Phys. A 16:L31 (1983).
2. L. A. Takhtadzhan and L. D. Faddeev, Russ. Math. Surveys 34:511 (1979).
3. M. L. Glasser, D. B. Abraham, and E. H. Lieb, J. Math. Phys. 13:887 (1972).

[^0]: ${ }^{1}$ Clarkson College of Technology, Department of Mathematics and Computer Science, Potsdam, New York, 13676.

